Best Available Copy # AD-A284 325 Bulletin of Magnetic Resonance FJ5RL-JR-92-0017 # NMR RELAXATION STUDIES OF MICRODYNAMICS IN ## CHLOROALUMINATE MELTS Pamela A. Shaw, W. Robert Carper, Charles E. Keller and John S. Wilkes Frank J. Seiler Research Laboratory, USAF Academy, CO 80840-6528, USA #### INTRODUCTION Room temperature molten salts consisting of mixtures of AlCl₃ and 1-ethyl-3-methylimidazolium chloride (MEICl), are of interest as aprotic solvents for studying a wide range of both organic and inorganic compounds [1-7]. These chloroaluminate molten salts possess considerable potential as battery electrolytes and various types of electrochemical agents [8-10]. The composition of a chloroaluminate melt has a considerable effect on its physical properties. The variations in physical properties of the melt are due to a combination of factors including ion-ion interactions [4], and Lewis acid-base properties. Chloroaluminate melts with AlCl₃ present in excess (mole fraction, N, of AlCl₃ > 0.5) are termed acidic with AlCl₄ and Al₂Cl₃ the predominant anions. The use of NMR relaxation methods provides useful information about the dynamics and structure of various chemical systems and chloroaluminate systems in particular. In a previous work[11], ¹³C NMR relaxation measurements were used to investigate the motion and interactions of the MEI cation. The results indicate that AlCl4 in a Na 10.22 MEI 10.78 AlCl4 melt forms a complex by interacting with the C-2, C-4 and C-5 hydrogens on the MEI* ring. This investigation was followed by studies [12,13] in which the Dual Spin Probe method [14] supported the existence of MEI(AICL), (n-1) complexes in neutral (AlCl₃ = MEICl) and NaCl-buffered melts. ²⁷Al, ²³Na and ¹³C NMR relaxation results confirmed the presence of the chloroaluminate-MEI* complexes and yielded 27Al and 21Na liquid state quadrupole coupling constants[12,13]. Application of the Dual Spin Probe(DSP) relaxation method typically requires knowledge of ¹³C dipolar relaxation rates which are defined by (1), the basic equation in which the ¹³C nucleus is relaxed by ¹H[15]: $$R_1^{dd} = N_H (\hbar \gamma_C \gamma_H)^2 r_{CH}^{-6} \tau_{eff}$$ (1) where R_1^{dd} (= $1/T_1^{dd}$) is the dipolar relaxation rate, N_H is the number of hydrogens attached directly to the carbon atom, γ_C and γ_H are gyromagnetic ratios and $r_{CH}=1.09$ Å. τ_{eff} is the effective correlation time and varies exponentially with temperature. Equation (1) is operative while under the "extreme narrowing condition" ($\omega \tau_{eff} < 1$) which is usually applicable for small molecules including the chloroaluminate melts[11]. R_1^{dd} is obtained by measuring T_1 , the Nuclear Overhauser Enhancement factor, η ($\eta_{max} = \gamma_H/2\gamma_C$) and using eqn (2) [16]: $$R_1^{dd} = \eta R_1 / 1.988 \tag{2}$$ The other part of the DSP method requires knowledge of quadrupolar relaxation rates for nuclei such as ²⁷Al and ²³Na. If there is a distortion from tetrahedral or cubic symmetry, nuclei such as ²⁷Al and ²³Na will be under the influence of an electric field gradient which produces the quadrupole interaction. The quadrupolar relaxation rate in the "extreme narrowing region" is given by(3) [15,17]: $$R_1 = [3\pi^2(2l+3)/10l^2(2l-1)][1+(z^2/3)][e^2Qq/h]^2\tau_c$$ (3) where I = 3/2 for ²³Na and 5/2 for ²⁷Al, eQ is the nuclear quadrupole moment, eq is the maximum component of the electric field gradient tensor, and z is the asymmetry parameter of the electric field gradient tensor(z = 0 for AlCl₃). 94 9 12 059 The quadrupole coupling constant, QCC, is given by: $$QCC = [e^{2}Qq/h]$$ (4) The DSP method has been applied to chloroaluminate melts[12,13] and has provided evidence that the ring hydrogens of MEI⁺ interact with the tetrachloroaluminate anion. The existence of these complexes has been supported by linear plots of 13 C dipolar relaxation rates(R_1^{4d}) vs. quadrupolar 27 Al relaxation rates(R_1) that pass through the origin as predicted by equation (5): $$R_1^{dd}(^{13}C)/N_H(\hbar\gamma_C\gamma_H)^2r_{CH}^{-6} = R_1(^{27}AI)/\alpha\chi^2$$ (5) where $\alpha = [3\pi^2/10][(2I + 3)/l^2(2I - 1)][1 + (z^2/3)]$, and QCC = χ . In this study, the DSP method is applied to melts containing MEICl, AlCl₃ and EtAlCl₂. The inclusion of EtAlCl₂ provides a "baseline" as there is a covalent bond between the ethyl group and aluminum in EtAlCl₂. The existence of covalent bonding(or complexation) between quadrupolar and dipolar nuclei in a molecule results in a linear plot of eqn. (5) that passes through the origin. In the MEICl-EtAlCl₂ melts reported herein, we observe a linear plot of eqn (5) that passes through the origin when applied to the terminal CH₃ carbon in EtAlCl₂ and one of the peaks in the ²⁷Al NMR of the melts. #### **EXPERIMENTAL** #### Materials The 1-ethyl-3-methylimidazolium chloride (MEICl) and chloroaluminate molten salts were prepared as described previously [1]. Ethylaluminum dichloride (EtAICl₂) was obtained from Aldrich. All materials were stored under anhydrous helium gas atmosphere in a dry box. All molten salt preparations and manipulations were performed in the dry box. Samples were loaded into 5 mm sample tubes, capped in the dry box, removed, and sealed immediately with a torch. ### NMR Measurements 13C and 27Al NMR spectra were recorded on a Varian XI.-300 spectrometer at 75.43 or 78.15 MHz. Temperature measurements were calibrated against methanol or ethylene glycol and are accurate to within 0.5°C. Pulse widths(90°) were typically 8.6 (75.43 MHz) and 7.6(78.15 MHz) μs. Longitudinal relaxation times were measured by the the inversion-recovery method $(180^{\circ}-\tau-90^{\circ}-T)$ with $T>10T_1$. At least 12 delay times(τ) were used and the results fitted to a three parameter exponential. NOE measurements were made using the gated decoupler method[18]. It is likely that the error in the NOE measurements is in the 5-10% range[18]. #### RESULTS AND DISCUSSION The ability of both AlCl₃ and EtAlCl₂ to form C_{2H} dimers[19,20] led us to examine the ²⁷Al spectra of: (1) neat EtAlCl₂, (2) mixtures of MEICI-EtAlCl₂ and (3) ternary melts (N = AlCl₃/MEICI/EtAlCl₂₃[21]. The neat EtAlCl₂ ²⁷Al NMR spectrum contains two peaks [21]. Peak 1 is a broad downfield peak that domi-nates the spectrum. The second peak (upfield) overlaps peak 1 and is only a fraction of peak 1 in total peak area. Peak 2 collapses into peak 1 as the temperature is lowered from 60 to 25°C. These two aluminum sites are consistent with the extent of monomer-dimer formation in liquid EtAlCl₂[21]. The MEICI-EtAICI₂ (N = 0.5/0.5) melt ²⁷Al NMR spectrum also has two peaks. In this case, peak 1(downfield) is very broad while peak 2 is very sharp, and has a low peak area. Peak 2 increases slightly in area and peak 1 broadens as the temperature is lowered from 70 to 0°C. We have previously[21] made the tentative assignments of EtAICI₃ for peak 1(downfield) and Et₂AI₂CI₅ for peak 2. Fig. 1. ¹³C Dipolar R1's vs ²⁷Al R1's(25 to 70°C) for Al peak 1 (127-131 ppm from $Al(H_2O)_4^{3+}$). In this study, we first apply the DSP method to the CH₃ carbon in EtAlCl₂ and ²⁷Al NMR peaks 1 and 2 from several melt combinations and neat EtAlCl₂. Fig. 1 contains the results for ²⁷Al peak 1 (downfield) and Fig. 2 contains the results for ²⁷Al peak 2. The fact that both plots are linear and pass through the origin, indicate that: (1) the DSP method is appropriate for these systems and (2) the species associated with each peak contains EtAlCl₂. Furthermore, the slopes of these lines can be used to Fig. 2. ¹³C Dipolar R1's vs ²⁷Al R1's(25 to 70°C) for Al peak 2 (102.5-103.0 ppm from Al(H_2O)₆³⁺). calculate the relative quadrupole coupling constants for the EtAlCl₂-containing species in solution. The QCC values obtained from Fig. 1(Al peak 1) are 171, 119, 106 and 93 MHz for the (.5/.5), (.35/.40/.25), (.25/.40/.35) melts and neat EtAlCl₂, respectively. The QCC values obtained from Fig. 2(Al peak 2) are 6.9, 20, 11 and 93 MHz for the (.5/.5), (.35/.40/.25), (.25/.40/.35) melts and neat EtAlCl₂(repeated). Results of the Dual Spin Probe method (eqn. [5]) applied to the (.5/.5), (.35/.40/.25) and (.25/.40/.35) melts indicate interactions between the Al-containing species in peak 2(102.5-103.0 ppm relative to Al(H₂O)₆³⁺) and both the NCH₃ and ethyl terminal CH₃ groups of MEI⁺. Fig. 3 contains the plots for the NCH₃ group in each melt and Fig. 4 contains data for the terminal CH₃ on the MEI ethyl group. Fig. 3. ¹³C Dipolar R1's vs. ²⁷Al R1's(25 - 70 C) for NCH₃ carbon vs Al peak 2(25 - 70°C). Fig. 4. ¹³C Dipolar R1's for ethyl CH, carbon vs ²⁷Al R1's(25 - 70°C) for Al peak 2. The QCC's obtained from the slopes in Fig. 3(MEI NCH₃) are 1.7, 2.3 and 4.4 MHz for the (.5/.5), (.35/.40/.25) and (.25/.40/.35) melts. The QCC's from Fig. 4(terminal CH₃ on the MEI ethyl group) are 1.6, 6.9 and 1.3 MHz for the (.5/.5), (.35/.40/.25) and (.25/.40/.35) melts. Finally, there is no correlation between the ring hydrogen dipolar R1's and any of the ²⁷Al peak R1's. This result is directly opposite to that found in MEICI-AlCI, systems [11,12]. #### **CONCLUSIONS** Application of the DSP probe method to these mixed melt systems indicates a lack of complexation between the ring hydrogens of MEI⁺ and any of these aluminum containing species. These and previous results[21] suggest that the formation of various charged dimers containing EtAlCl₂ takes precedence over the formation of complexes between EtAlCl₃ and the MEI⁺ ring hydrogens. However, there is evidence of interaction between the various Alcontaining species and the CH₃ groups(NCH₃ and terminal CH₃ in the ethyl group) of MEI⁺ in these melts. #### **ACKNOWLEDGMENTS** This work was partially supported by a National Research Council and Summer Faculty Research Associateship to W. R. C. and a summer Graduate Fellowship to P. A. S. #### REFERENCES - [1] J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, *Inorg. Chem.*, 21 1263 (1982). - [2] J. S. Wilkes, J. S. Frye and G. F. Reynolds, *Inorg. Chem.*, 22 (1983) 3870. - [3] A. A. Fannin, L. A. King, J. A. Levisky and J. S. Wilkes, J. Phys. Chem., 88 (1984) 2609. - [4] A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes and J. L. Williams, J. Phys. Chem., 88 (1984) 2614. - [5] K. M. Dieter, C. J. Dymek, N. E. Heimer, J. W. Rovang and J. S. Wilkes, J. Amer. Chem. Soc., 110 (1988) 2722. - [6] C. J. Dymek and J. J. P. Stewart, *Inorg. Chem.*, 28 (1989) 1472. - [7] J. A. Boon, J. A. Levisky, J. L. Pflug and J. S. Wilkes, J. Org. Chem., 51 (1986) 480. - [8] C. J. Dymek, J. L. Williams, D. J. Groeger and J. J. Auborn, J. Electrochem. Soc., 131 (1989) 2887. - [9] C. J. Dymek and L. A. King, J. Electrochem. Soc., 132 (1985) 1375. - [10] C. L. Hussey, T. B. Scheffler, J. S. Wilkes and A. A. Fannin, J. Electrochem. Soc., 133 (1986) 1389. - [11] W. R. Carper, J. L. Pflug, A. M. Elias and J. S. Wilkes, J. Phys. Chem. 96 (1992) 3828. - [12] W. R. Carper, J. L. Pflug and J. S. Wilkes, Inorganica Chimica Acta 193 (1992) 201. - [13] W. R. Carper, J. L. Pflug and J. S. Wilkes, Inorganica Chimica Acta (in press). - [14] J. J. Dechter and U. Henriksson, J. Magn. Res., 48 (1982) 503. - [15] A. Abragam, "Principles of Nuclear Magnetism", Oxford University Press, Oxford (1961). - [16] K. F. Kuhlmann and D. M. Grant, J. Amer. Chem. Soc., 90 (1968) 7355. - [17] B. Lindman and S. Forsen, in "NMR Basic Principles and Progress," P. Diehl, E. Fluck and R. Kosfeld, Editors, Vol. 12, p. 22, Springer-Verlag, New York (1976). - [18] D. Neuhaus and M. Williamson, "The Nuclear Overhauser Effect in Structural and Conformational Analysis", VCH Publishers, New York (1989). - [19] J. Weidlein, J. Organomet. Chem., 17 (1969) 213. - [20] B. Gilbert, Y. Chauvin and I. Guibard, Vib. Spectros., 1 (1991) 299. - [21] W. R. Carper, C. E. Keller, P. A. Shaw, M. P. and J. S. Wilkes, in "Eighth International Symposium on Molten Salts", Electrochem. Soc., New York (in press). — will and/or pecial A-1/20